LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS
 THIRD SEMESTER - NOVEMBER 2023
 UST 3502 - MATRIX AND LINEAR ALGEBRA

Date: 04-11-2023
Time: 09:00 AM - 12:00 NOON

SECTION A - K1 (CO1)

Answer ALL the Questions

(10 x $1=10$)

1. Define the Following
a) Trace of the Matrix.
b) Inverse of a matrix.
c) Orthogonal Transformation.
d) Power of a matrix.
e) Signature of the matrix.
2. True or False
a) Rank of the matrix $\mathrm{A}_{3 \times 4}$ can be 4.
b) The inverse of the matrix $\mathrm{A}_{3 \times 3}$ always exists.
c) The equation $\mathrm{AX}=\mathrm{b}$ is called homogeneous if $\mathrm{b}=0$.
d) Cayley - Hamilton theorem satisfied any non-square matrices.
e) The number of -ve square terms in the Q.F is called the Index of Q.F.

SECTION A - K2 (CO1)

Answer ALL the Questions

3. Fill in the blanks
a) Inter changing of any two rows or column in the matrix change the
b) Cramer's rule is applicable only for Matrices.
c) The set $\{\mathrm{u} 1, \mathrm{u} 2, \ldots \ldots . . \mathrm{uk}\}$ is linearly dependent iff
d) The Eigen value of A is $3,-4$ and 0 . Then, the Eigen Value of A^{3} is
e) All Characteristic Values are positive, the Q.F is called
4. Answer the following
a) Find the cofactors of $\mathrm{A}=\left[\begin{array}{cc}3 & -2 \\ 5 & 4\end{array}\right]$.
b) What is the inverse of the matrix $A=\left[\begin{array}{cc}1 & 7 \\ -3 & 4\end{array}\right]$?
c) What is mean by Basis?
d) Find Inverse of A by using Cayley- Hamilton theorem from the equation $\mathrm{A}^{2}+3 \mathrm{~A}+5 \mathrm{I}=0$, Where A $=\left(\begin{array}{ll}2 & -3 \\ 4 & -5\end{array}\right)$
e) Write the nature of the Quadratic Form: $\mathrm{X}_{1}{ }^{2}+2 \mathrm{X}_{2}{ }^{2}-\mathrm{X}_{3}{ }^{2}$.

> SECTION B - K3 (CO2)

Answer any TWO of the following

5.	Write all properties of Determinants.

6. Solve the equations by using Cramer's Rule: $2 x+4 y+z=5 ; x+y+z=6 ; 2 x+3 y+z=6$.

Determine whether the set $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is linearly dependent or linearly independent.
8.

Two of the Eigen values of $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ are 2 and 8 . Find the $3^{\text {rd }}$ Eigen value and also find its
Eigen vector and its determinant.
SECTION C - K4 (CO3)
Answer any TWO of the following
$(2 \times 10=20)$
9. \quad If $\mathrm{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$, , Show that A is Orthogonal.
10. Verify Cayley- Hamilton theorem then find A^{4}. When $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
11. Show that 3 and -2 are Eigen values of the linear operator T on R^{2} define by T $\left(\left[\begin{array}{l}x 1 \\ x 2\end{array}\right]\right)=\left[\begin{array}{c}-2 x 1 \\ -3 x 1+x 2\end{array}\right]$ and find bases for the corresponding eigen spaces.
12. Find the Eigen vectors of $\mathrm{A}=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.

SECTION D - K5 (CO4)

Answer any ONE of the following
$(1 \times 20=20)$
13.
(i) Prove that $\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & x z \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
(ii) If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right], C=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$

The compute $(\mathrm{A}+\mathrm{B})$ and $(\mathrm{B}-\mathrm{C})$ and
also verify that $\mathrm{A}+(\mathrm{B}-\mathrm{C})=(\mathrm{A}+\mathrm{B})-\mathrm{C}$
14. Solve the following system of linear equations:
$\mathrm{X} 1+2 \mathrm{X} 2-\mathrm{X} 3+2 \mathrm{x} 4+\mathrm{x} 5=2$
$-x 1-2 \times 2+x 3+2 \times 4+3 \times 5=6$
$2 \times 1+4 \times 2-3 \times 3+2 \times 4=3$
$-3 \times 1-6 \times 2+2 \times 3+3 \times 5$

SECTION E - K6 (CO5)

Answer any ONE of the following

15. (i)Calculate $[\mathrm{T}]_{\mathrm{B}}$, If T and B are the linear operator and the basis $\mathrm{B}\{\mathrm{b} 1, \mathrm{~b} 2, \mathrm{~b} 3\}$. Where $\mathrm{b} 1=$ $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], b 2=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], b 3=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and $T\left(\left[\begin{array}{l}X 1 \\ X 2 \\ X 3\end{array}\right]\right)=\left[\begin{array}{c}3 x 1+x 3 \\ x 1+x 2 \\ -x 1-x 2+3 x 3\end{array}\right]$
(ii) Verify Cayley - Hamilton for the matrix $\mathrm{A}=\left(\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right)$.
16. Reduce the Quadratic form below to its normal form by an orthogonal reduction $3 \mathrm{X}_{1}{ }^{2}+2 \mathrm{X}_{2}{ }^{2}+3 \mathrm{X}_{3}{ }^{2}-$ $2 \mathrm{X}_{1} \mathrm{X}_{2}-2 \mathrm{X}_{2} \mathrm{X}_{3}$. Using the result and find A^{4}.

\&\&\&\&\&\&\&\&\&\&

